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Abstract  

tn this  paper we consider some of  the  proposed models  for introducing the  long-range 
scalar interact ion in Riemannian  space-times, The relationship among  these models  is 
discussed. Particular emphasis  is placed on the  in t roduct ion of  the  scalar interact ion via 
a conformal  mapping on the  original Riemannian  geometry.  Following this  me thod  we 
introduce a spinorial model  for the  coupled system. We also discuss the  meaning  o f  the  
identities satisfied by the  left-hand side of  the coupled field equations,  which are present  
for any model  derivable f rom an action principle. 

1. Introduction 

The introduction of a scalar field in the gravitational field theory of general 
relativity, due originally to C. Brans and R. H. Dicke (1961), was subsequently 
studied by several authors. Here we consider a general formulation due to 
G. Horndeski (1974), which besides considering the structure of general 
Legrange scalar densities depending on the metric tensor gab, a scalar field G 
and their derivatives of arbitrary order, also consider the most general action 
principle involving second-order Euler Lagrange equations. We show that this 
general formulation degenerates in Bergmann's formulation (1968) by means 
of a particular choice of the arbitrary functions of the scalar field which are 
present in the general Lagrangian density proposed by Horndeski. 

The left-hand side of the Euler Lagrange equations for ga~ and ~b, which are 
geometrical objects with the structure of a symmetric tensor density of weight 
+ 1 and a scalar density of the same weight, satisfy four constraint relations. 
These constraint relations will appear for any formulation derivable from the 
action principle. Here we show that these constraints may be understood at 
least from two different arguments. The first of these arguments is a simple 
generalization to the Riemannian geometry of a similar result which holds in 
the Lorentz-covariant field theory involving the free scalar field. 
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In this paper we also propose some models of scalar-tensor theories 
derivable from a conformal transformation on the original Riemannian space- 
time describing the free gravitational field. We use this process for introducing 
a spinor formulation for the coupled system (gab, 0). 

The notation used here is as follows: Lowercase Latin letters designate 
tensor indices running from 0 to 3. Capital Latin letters refer to spinor degrees 
of freedom, and run from 1 to 2 in the complex domain. The local signature 
of the metric tensor is - 2 .  For any quantity B, the notation B, a indicates a 
partial derivative of  B, and the notation Bla the covariant derivative of the 
quantity B. 

2. General Vacuum Field Equations o f  Scalar-Tensor Theories in Four- 
Dimensional Riemannian Spaces 

In this section we make some considerations on the general formulation 
proposed by Horndeski. Consider a general Lagrange scalar density that is 
a concomitant of a pseudo-Riemannian metric tensor, a scalar field ~, and 
their derivatives of arbitrary order: 

~ I1 = " ~  H (gab ; gab, i I " . "  . gab. i 1 . . .  ip; ¢ ;  ¢ , i 1 ' '  " ~9, i1" " iq ) 

for p, q ~> 2. The Euler-Lagrange tensor densities corresponding to this 
Lagrangian are 

E ab = ~ ( - 1 )  h+l  - - -  (2.11 
h = 0 Oxi l  Oxih  Ogab, il "'" ih 

q ~ ~ ~ f H  
E =  2 (--1) h+ l  . . . .  (2.21 

Oxil Ox ih O~,i, ... ih 
h=O 

From a mathematical technique due to du Plessis (1969), it is possible to show 
that E ab and E are not independently defined, but are related by the four 
constraint conditions (Horndeski and Lovelock, 1972; Horndeski, 1971) 

Earth = ½ ¢laE (2.3) 

This result shows that the Euler-Lagrange equation for the scalar field is a 
consequence of the tensorial equations. Indeed, defining 

P = gabOlaOIb  = gabO,  a(P, b (2 .4 )  

we have 

E = (2/p)4)t,,E abt~, 

Similar relations can also be derived for other types of interactions with 
the gravitational field, as for instance, for the Einstein-Maxwell theory (Love- 
lock, 1973). 

The usual results of field theory apply for second-order equations; therefore, 
we are more directly interested in the situation where p = q = 2. All the subse- 
quent discussion will refer to this situation. The origin of the identity relation 
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(2.3) may be drawn to a result of  the conventional Lorentz-covariant field 
theory of  a free real one-component field q$ (Schweber et al. 1955), with 

<o, t 
a-xb (2.5) 

the generalization of this formula to a Pdemannian space-time being (we 
indicate by ~o the new Lagrangian density) 

(x/ -'---g Tab ) l b = c k l a E ( f ) ,  E(.L.G ° )  = X / ~  o~(.LP) (2.6) 

Recalling that the Einstein's tensor G ab satisfies the four contracted Biancki 
identities 

Gablb = 0 (2.7) 

And that the gravitational field equations coupled to a scalar field are of  the 
form 

Eab - x/2--g(G ab + Tab) = 0 (2.8) 

we have from (2.7) and (2.8) 

Eaa Ib = X/--~( Gab la + Tablb) = (X/----g Tab)i b 

From this relation and from (2.6) we get a formula similar to (2.3). The factor 
1/2 which will be absent in this formula may be introduced if we define the m~ 
Lagrangian with a multiplicative factor 1/2. In this case'7 zab is also defined with 
the same constant multiplicative factor. 

Horndeski proposed the following Lagrange scalar density (for q = p = 2) 
for the coupled system (gab, ¢): 

e ffni-C'~ab *~-ed 
1/---'2os:abcx. x.ldo ef + 1 /--7,.0 ~abo col (2.9) 

--~N/--gP2Udef~latp .V,-bc ~V--gP3UcdJt',.ab 
+ ~f~--gfl + cEabedRPqabRqed 

where fib, ~2, and ~3 are arbitrary functions of  the scalar field 0. These functions 
are assumed to be independent of  the gab. The quantity rl is an arbitrary function 
of ~ and p; and finally, C is a constant. The first and last terms in this Lagrangian 
density may be written as 

R l)abcd~ + ceabCdRPqabRqpcd] X / ~ [ (  R2 -- ¼Rab Rab + abocV" .~ I 

some of these terms have, formally, a structure similar to the gauge invariant 
terms FaVF ab and eabCdFa~/'od of  the Maxwell Lagrangian density for the 
electromagnetic field. Owing to this analogy we may call the factors associated 
to/31 (~b) and to C the terms in ~ H  corresponding to a "gauge invariant formula- 
t ion." However, we should note that the terminology "gauge invariant," used 
in this formal correspondence, is not to be understood as a true gauge-invariant 

(o). 
Lagrangian d e n s i t y S  " 
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formulation. This sort of theory is obtained only for the linear approximation 
to the field equations, and clearly this is not the case here. The second term 
on the right-hand side of (2.9) is an interaction term not satisfying the require- 
ments of a minimal coupling. The third term is the usual term that generates 
the left-hand side of Einstein's equations. Finally, the term x / - ~ ( ¢ ,  p) is a 
general expression involving the field ~ x )  and the quantity O(X). In the absence 
of the gravitational fietd ~a H has the simplified form 

(o) 
~e/~ = ~(~, p) 

(o) . ab 
P=~/ ~,a¢,b 

The particular choice 
(o) (o) ½#2¢2 1 (0) 

r/(¢, p)  = F (¢ )  + G(p)  = + ~p 

generates the Klein-Gordon equation for a scalar meson with rest mass p. 
In the remaining of this work we shall use a simplified form for f H  

obtained by taking 

th (~) = &(¢ )  = 0 

/33(¢ ) =fi(¢) (2.10) 

C = 0  

And the function r/(q~, p) is expanded in Taylor series on the quantity p(x) 
retaining only the linear term 

"rl (~, p ) = f3 (~) + Pf2 @5) (2. ] 1 ) 

The reason for considering this particular expression for ~ is due to the fact 
that we want to obtain a close relationship with the usual field theory formula- 
tion of  the Klein-Gordon equation [for flat space-times the choices f3(¢) = 
½p2¢z, ]~ (¢) = ½ generate suchan equation]. 

The Lagrangian density that emerges as a consequence of the choices 
(2.10) and (2.1 I) is 

~ B  = ~--/~--g(fl R + f z  0 + f3) 

This Lagrangian density was proposed by Bergmann (1968). For this Lagrangian 
the rest mass term for the scalar field in the flat space-time limit arises from the 
cosmological term @g-f3(for the previous choices off3 and f2). The field 
equations derivable from ~° B are 

Eab(~B)  = f l~ 'S~Gab + ~ (gabOlele __ elba) 

+ X / ~  [pf~' -- ½(f3 + Pf2)]g ab +'V/-~(f2 --.ff1')q~laq~ Ib = 0 (2.12)  

E ( Y B )  =- - ~  [f'IR - Pf;  + ft3 - 2fgNabOtab] = 0 (2.13) 



SCALAR-TENSORIAL FIELD EQUATIONS IN GENERAL RELATIVITY 647 

It may be seen from a direct calculation that the left-hand side of the equations 
(2.12) and (2.13) satisfy the conditions (2.3). In (2.12) and (2.13) we used the 
notation 

, ~Ye 
f i  - ~ ¢  

3. Introduction o f  the Scalar Interaction by Means o f  a Conformal 
Transformation 

As is well known, the scalar interaction may be introduced by means of a 
conformat transformation on the metric tensor gab. For the free gravitational 
field we have 

f o  =v R 

Gab_ ~-~0 

~gab 

A conformal transformation on gab of the form 

Lb = e2'~(X)gab (3.1) 

induces on the Ricci scalar the following variation (Eisenhart, 1960): 

if, = e-Z° (R + 6Alo + 6A2o) (3.2) 

where 

~1~7 = gabolaOib = OL 

A2{7 = gab ola b = [~0 

We take for the Lagrangian density of the coupled system (ga~, q~) the expression 
for the conformal variation of the free Lagrangian ~ o :  

5¢ = x /~ /~  = x / ~ e  2a (R + 6Do + 6a) 

recalling that 

_ 1 D ( ~ g o l a )  
Do X / ~  3xa 

we obtain by partial integration, neglecting a surface term 

i = f ~k°d4 x 

og a = VCgs0(o) [R -6a]  

where, 

~ (o )=e  2a 

(3.3) 
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Taking o = o(¢), we get 

o~ = o'2p, ~0(¢) = e 2a(~) 

and the equation (3.3) takes the form 

f = V ' -~0 (¢ )  [R - 6o'2p1 (3.4) 

which is a particular case of  the Lagrangian density -~B for 

A(¢)  = ~'(¢) 

72(¢) = - 6 o ' % ( ¢ )  

23(¢) = 0 

In the absence of  the gravitational field the Lagrangian density (3.4) describes 
a scalar field with variable rest mass. Indeed, the field equations obtained from 
(3.4) have the form 

Eab ~ % / ' ~  ¢(~))[Gab + 20, (g.ab¢lele _ ~)[ba) 

+ pgab(70'2 + 2 0 " )  --  2#)la¢lb(o '' + 50'2)] = 0 (3 .5 )  

E==-2X/-A-go'~#(¢)[-R - 6 p ( o  '2 + o " )  - 6o ' [ ]¢]  = 0  (3.6) 

The field equation (3.6), for the scalar field, in the limit where R -> 0, gab -+ rlab 
takes the form 

~2-- " 1 O" t O  | 
E ~  12o'2~p(¢) - ~ p - D e |  = 0 

(o) ' o (o) (o) ] 

where [] is the "flat D'Alembertian operator"  
(o) 

[] = ,rlabOa~) b 
(o) 

This equation has a mass term of  the form 

m2(¢) = ,~,2 + o, ,¢b<, ,¢ ,b  

The present type of  approach allows us to introduce the interaction of the 
gravitational field with several scalar fields, for instance, for two of  such fields 
we may associate the following conformal transformation on the components 
of  the metric tensor; 

G ~  = e 2(°' + O2)g~b 

writing 

0 = Cc 1 + 0 2 

we get a total Lagrangian density given by (3.3) for 

9 ( o )  = e2[O, ¢~, )+% (%)1 = g91(~1)tP2(¢2 ) 



S C A L A R - T E N S O R I A L  FIELD E Q U A T I O N S  IN G E N E R A L  R E L A T I V I T Y  

Then, 

where 

649 

' P [a  
O~ = gab(a1 + 02)la(O 1 + 02)lb =0~1 +0~ 2 + 201a2q)11a~b 2 

0:1 = gabo-11a6rl[b = 0~12pl 

r2 
0~2 = gabo2laO21b = 02 P2 

Thus, the Eq. (3.3) assumes the form 

~2 r2 r t 
$12 = x/~¢1(~11~o2(~2) [ R - 6~q Pl - 6% P2 - 12olo2@ta~2 a] (3.7) 

This Lagrangian density may describe the interaction of the gravitational field 
with a charged scalar field. We may write 

~ ' 1 2  = N / ~ 0 1 ~ 0 2  [R  - 6gab~ab(~i , ~ilc)] (3.8) 
(1,2) 

(the index / in the scalar quanti ty is just an abbreviation and runs from 1 to 2). 
We have 

r2 '2 ~ ' 
~Yab = CYl r~lla~bllb + 02 q3'2[a~ib + c;lO'2(~llar~21b + ~ l l b ~ i a )  (3.9) 

(1 ,2)  

The expression for f 1 2  is of  the same general structure as the expression 
for the Lagrangian corresponding to one-component scalar interaction. Indeed, 
from (3.4) we have 

f = ~ o [ R  - 6gab¢ab(~, ¢lc)l (3.10) 

~ab = a'2 ~la¢lb (3.11) 

Therefore, for variations on the gab, for fixed q51 and ~2, we just replace in the 
corresponding variation in (3.10) ~ by  so,so2 and ~ab by ~ab- Since the varia- 

(1, 2) 
tion on the gab in (3.1 O) has the form 

f S d 4 x  = f Gab6gab~/-Zgd4 x + f gab~/-Lg3Ravd~ x - 6  f XfZ-g~o~ab~gabd4x 

(3.12) 

Where the second term on the right-hand side may be written as (Landau and 
Lifschitz, 1951) 

f J % ~ - - ~ G j 4 x  = f ~ a~Xa (V--7~wa)d4x (3.13) 

for 
~ W gt m ~ gl I'gla 1"1 = g ~Fmn -- g 8Prnn 
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Using this expression a long but otherwise straightforward calculation gives 
(neglecting surface terms) 

f gabtpX/-~SRabd4x = f ~ {gmn(gbC~Olc)Im --gab(gmC~lc)lm }Sgabd4X 

(3.14) 

Therefore 

8 f ~ d 4 x  = f N / ~ [ -  Gabg ) - gab(gmC~oIC)lm + grna(gbc~ole)lm 

+ 69@ ab _ 3~ogrSi,~rsgaiO] 8gabdaex 

giving 

E ab =-- N/~[~oG ab +gab(gmCtflte)l m -- grna(gbCg~le)l m -- 6~o~ a~ + 3qogrS~rsgab ] 

(3.15) 

Substituting ~0(~) by exp [2o(q~)] in this expression we get the previous 
equation (3.5). The corresponding equation for the system with two scalar 
fields is obtained by the replacements 

0,2) 

Thus, 

E =- [G ab + 2oi(gabD l - & a )  
(1, 2) 

+ 2o~(gabg]c~2 _ ()~ba)+ o lgab(7o~ + 2o'~) 

- 2 ~  ~ ( o l  + + p2gab(7o'2 2 + 2o~) la } " 5Otl 2) 

__ o,4.la.4,tb[~" '2 9 ' ' ab e 
~v2 v2 ~.~'2 + 50"2 ) + -0102(7g ~{c~2 

In the limit where q~l -+ 4~, ~b= -+ 01 (or the reverse), we re-obtain the equation 
(3.5). The left-hand side of the field equation for ~1 has the form 

E 1 {q51 } = 2%/~tP1~02o' 1 [ - -R - 601(o  ~ + o;  2) - 60 '  1 [[]~b 1 

. - ~ - -  a t t " ¢ 2 
- -  l 'g 'q)l a~2  O"102 - -  6P2(°= + o= ) - 6o;D~b2] (3.17) 

For obtaining the corresponding left-hand side of the field equation for q~= just 
replace the subscripts " t "  by "2" and "2" by "1." The equation (3.17) goes over 

1 For 4~ ~ 0, we have that ~P2 ~ e2°= (0) = const, assuming that o 2 ( ~ )  is finite at the 
origin. This constant factor may be absorbed in the function ~l(g~l) = ~o (q,). 
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(3.6) in the limit where ~1 -+ ~, ~2 ~+ 0 [the same consideration of a common 
constant multipticative factor arises here, similarly to the situation for the 
tensorial equation (3.16)]. It should be noted that, in spite of looking similar, 
the quantities E 1 {~1} and E2{~2} generate field equations that are independent 
one from the other. Indeed, the field equations for ~b 1 and ~b 2 may be put as 

- 6o?Dc~ - 6PlO;(o~+ O'l 2) - R o  i = J 2 ~ l  

, . + . r 2 , ,  ° ' ~  = J l - ~  
- 6 o ; D ~  - 60202(02 "2 ) -~'~'~ 2 

where J io  k are the corresponding source terms for the coupling between the 
fields q~l and q52 in the presence of the gravitational field: 

a t t Vt 
Ji--, k = 12qSilaq~ criok + 6Pi(Oi + ~.2) + 6~E]44 

The identities relating the left-hand side of the field equations now have 
presently the form 

This process may be generalized in order to include more scalar components. 
For instance, introducing a third scalar field in this method is equivalent to 
considering the coupling among a charged meson, a neutral meson, and the 
underlying gravitational field. 

4. The Scalar Interaction in the Spinor Formulation 

In the present work we consider only the interaction among scalar fields 
and the underlying gravitational field. Both systems being bosonic in their 
structure do not need a spinor formulation for the mathematical content of 
the formulas describing the interaction. However, from the viewpoint of 
elementary particles and fields, if  we want to work with fermionic systems in 
this scheme we will need the spinor formulation for the correct, mathematical, 
formulation of the coupled system. For instance, consider the problem of 
considering the coupling between the Brans-Dicke field (that means the system 
gab, ~) and a system of fermionic fields. For treating this complex system we 
need a spinor formalism. Since in general this fermionic system possesses some 
internal symmetry properties, we may ask whether such symmetries are kept 
unchanged under the constraint that relates the left-hand sides of the several 
field equations for the coupled system. It should be noted that these types of 
questions are more naturally treated in a quantized theory for the whole 
system. However, since we do not have at present such a theory, we may 
consider the problem on the classical level. 

In what follows we treat the mathematical problem of translating the 
present tensorial formulation for the coupled (gab, O) system in a spinorial 
language. This method serves as a first step towards the more general problem 
referred to previously. First we introduce some general results concerning 
the spinor formalism. 

Associated with an everywhere regular region G of the four-dimensional 
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Riemannian space there exists a two-dimensional symplectic space, that is, a 
linear vector space over the field of the complex numbers equipped with a 
nondegenerate skew symmetric bilinear scalar product. The connection between 
geometrical objects defined on points x b C G with geometrical objects 
belonging to the symple.ctic space is obtained via a set of four Hermitian 
2 x 2 matrices aa = oaaM(x). Spinor indices will be denoted by capital Latin 
letters. Denoting by $2 the two-dimensional symplectic space corresponding 
to G, the objects aa possess the index a belonging to G and the pair of  indices 
A, M belonging to S 2. As an example, to a vector field on G, say Aa, corres- 
ponds a second-rank spinor VA~) on $2, 

va = %AM(x)V (x) 

The following definitions for raising and lowering spinor indices are used: 

uA = eABuB = _UB e-~ 

H A = HBCBA =--eABlg B 

where e = (e "AB) is the skew symmetric metric on 5:2, 

- I  0 

We define the set of 2 x 2 Hermitian matrices 

ra = eoae (4.1) 

where a bar means complex conjugation. This relation in the index notation 
takes the form 

T 
raNM = --~aNi4 = --°aNS# (4.2) 

With the set of  Hermitian matrices oa and ra we can define the metric tensor 
gab on G by means of 

%rb + Obra = --2gab " I (4.3) 

where I is the 2 x 2 identity matrix. This equation in the index notation reads 

Ci ardf4 Ob JglR + obKM Oa #IR = 2 gab S R K (4.4) 

We may write 

gab = --½ Tr(oarb) (4.5) 

The internal space $2 possess a connection FA8 and a curvature paAB, and 
we have the usual relations: 

uA lab -- uA  tbct = pabAB lgB 

eab= ra, b - Pb, a - PaPb + PbPa 
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The components of  the Riemannian curvature are related to the components  of  
Pab by 

Pab - 1 _e_d rJ - ;g'~ o r~abcd 

The inverse relations are also known in the extensive Iiterature on this subject. 
We consider now a conformal transformation on the set of  matrices a a and 

ra 

°a = eX°a (4.6) 
ra = eXra 

where X is a real scalar. This transformation induces on the gab a conformal 
variation similar to the variation considered in equation (3.1). Thus, we may 
write 

x/@/} = x / -~oOt)  [R + 6Dk + 6¢] (4.7) 

for 

~ ( X )  = e : x  

= g " b X l a X l b  

As before x/~ffR is considered as the Lagrangian density for the free 
gravitational field, and X/-Zg-~ is the Lagrangian density for the coupled 
system (gab, X). By partial integration neglecting the surface term we find 

5 a = x / - ~ o ( X ) [ R  - 6~31 (4.8) 

First of  all we determine the tensorial equation for a free gravitational field 
in this spinor formalism. Starting with 

(o) 
and taking variations on the Oa, using (4.1) and (4.5) we get 

6 S = - - ~ g G a b 6 g a b  = ½X/C-gGabTr[(aarrb + ~dra)Sor] 
(o) 

: ½x/-LTff Tr [ (Grbrb  + Gmra)8or]  

since G ab is symmetric,  we obtain simply 

8 (~o) = ~ / - ~  Tr(GarT"a~Or) 

Therefore, the equations for the free gravitational field have the form 

E r ~- ~Z--gG art a = 0 (4.9) 
(o) 

In the index notation they assume the form 

-= = 0 
(o) 
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In this case the contracted Bianchi identities imply that 

(o) 

From (4.3) recalling thatgab has a null covariant derivative we get 

aal r = 7"al r = 0 

Thus, in the present case the contracted Bianchi identities read 

Er~v~ir-- 0 (4.10) 
(o) 

From the Lagrangian density (4.8) we get 

_ 3~"g[j~pgab~gab + 6 ~ X l a X l b 6 g a b  

[in this variation the field X(x) is kept fixed]. Using the previous expression 
for 6w a, we can write 6 f a s  (neNecting a divergence) 

8 ~q~=~Z'~ [_Gab~ _gab(gmC~le)lm +gma(gbC~Oic)l m + 6tpxlaxl b _ 3 tp/3g ab] 8gab 

or equivalently as 

~ = ½N/'~{qO Gab + gab(gmC~le)lm _ grna(gbc~otc)[ m 

- 6¢Xla3, Ib + 3~o/3gab}Tr [(8arrb + 8~ra)Sar] (4.11) 

The factor multiplying the trace in (4.11) is symmetric over the indices a, b. 
Denoting this factor by ½ x / ~  S ab, we have 

~ = V-gTr(grara6or) 

Therefore, the field equations for the gravitational field interacting with the 
scalar field X(x) are 

Er=x/_g~(X)[Gra +7~g ra - lOXlrx ja - 2X Ira +2graDx]ra=O (4.12) 

For the case where X -> o(~), and consequently ~ -> a'zp, this equation takes the 
form 

E r = EraTa 

where E ~ is given by (3.5). By analogy with the formula (4.5) we will write 
the scalar quantity X(x) under the form 

X = - ½ T r ( w -  a )  (4.13) 

where co is a non-singular Hermitian 2 x 2 matrix, and 

fZ = ecSe = f2 + 
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It is easy to prove that the X given by (4.13) is a real quantity. We may also 
prove that 

6X = -Tr ( f~ .  6co) (4.14) 

In the index notation, the equation (4.13) reads as follows: 

X = ½ c o A ~  ~ 

since fy~A = _~BA = _~,~A. The second-rank Hermitian spinor co now 
describes the scalar field, similarly to the % which describe the gravitational 
field according to the relation (4.5). 

The Lagrangian density (4.8) under variation on the quantity X(x) becomes 
(neglecting the surface term) 

6 ~q°= x/C-g~0(X)[2R - 12/~] 63. + 12(x/Cgs0gabxlb),a6X 

Since the second factor on the right-hand side, multiplying 61% is a vector 
density of weight + 1, the partial derivative is equal to the covariant derivative, 
and we get 

65¢= X / ~ ( X ) [ 2 R  + 12/3 + 12rqX]6X 

Thus, the left-hand side of the field equation for the scalar field, in this spinor 
formulation, is given by 

~ f  = -X/~o(X)[2R + 12/3 + 12E1X] Tr(fZ • ~co) 

and has the form 

E=- -2vCg~0(X)[R + 6/3 + 615]X] a (4.15) 

The geometrical objects given by (4.12) and (4.15) are, respectively, a vector 
and a scalar on G, and five Hermitian matrices on $2. 

Recalling the unitary five-dimensional field theory of Kaluza-Klein-Thirry 
we may use the notation g2 = r s. However, here we are not directly interested 
in this analogy, and we continue to use the symbol ~2. 

The identity satisfied by the geometrical objects Efia and Erka now takes 
the form 

where 

ERa = g ~ 2 ~  

is the scalar differential given as the "nucleus" of equation (4.15). 

5. Concluding Remarks 

In this work we have considered some of the proposed models for the 
introduction of a scalar field in general relativity. The relationship among 
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these models was studied. Presently we want to turn back again to the problem 
of existence of the four identities connecting the left-hand sides of the Euler- 
Lagrange equations for the scatar-tensorial system. We have seen in Section 1 
that these identities may be obtained by a covariant generalization of a formula 
holding in the Lorentz-covariant field theory of a scalar field. Another way of 
understanding the existence of these identities is to recall that in the Lagrangian 
formulation of general relativity, the existence of the four contracted Bianchi 
identities impiies that only six equations of motion are actually independent. 
This result, which is mathematically equivalent to the statement of general 
covariance of the theory is also verified for the scalar-tensorial theory. 

As a final remark we note that from the general form of the tensorial 
equation coupled to a scalar field, we have 

E ab = G at' + T ab = 0 

We have, as result of the existence of the four identities relating this system, 

Tablh = ½~IaE 

Thus, the equations of the gravitational field contain the equation of motion 
of the scalar field which represents, in this case, the source for the gravitational 
field. 
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